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A B S T R A C T

Conventional fossil fuel-powered vehicles are gradually being replaced by electric and hydrogen vehicles in the 
transportation sector. Even with all the recognized benefits and recent advancements in energy efficiency, 
decrease of noise, and environmental impact reduction, the market of electric and hydrogen mobility is still not 
up to par. Allocating charging stations in metropolitan areas for electric vehicles is considered as one of the most 
significant obstacles preventing electric and hydrogen vehicles from becoming more widely used. In this paper, 
an efficient approach aimed at finding optimal locations for electric vehicles (EV) charging stations in urban 
areas is proposed. Particle Swarm Optimization algorithm technique is utilized with the proposed approach. 
Various parameters were taken into consideration in this work, such as the horizontal distance that EVs travel to 
reach charging stations (CSs), and positive slope that EVs face to reach charging stations. The optimization 
problem is formulated as a Mixed-integer problem. The objective function works on minimizing the energy 
consumption of EVs to reach CSs in the investigated area. Difference constraints are incorporated with the 
proposed approach in order to increase the accuracy and efficiency of the proposed approach. The proposed 
approach is applied on real world datasets and is experimentally validated using through comparison with 
Genetic Algorithm and the greedy approach. The results demonstrate that the proposed approach saves energy 
about 22% and 43% compared to the genetic algorithm and greedy technique, respectively.

1. Introduction

Carbon dioxide (CO2) emissions which result from internal com-
bustion engines (ICEs) vehicles are considered as one of the most sig-
nificant contributors to these issues in the transportation sector 
worldwide [1]. The transportation sector participates in about 14% of 
total Greenhouse gas (GHG) emissions, with road transport accounting 
for about 13% [2].

All the mentioned challenges in transportation sector have made 
electric and hydrogen vehicles ideal solutions to creating a new envi-
ronmentally friendly transportation system [3]. Electricity and 
hydrogen share the advantages of being highly flexible in terms of basic 

energy sources and the ability to choose from a variety of renewable 
energy options [4]. Furthermore, the existence of new technologies such 
as proton exchange membrane fuel-cells (PEMFC) is considered a 
promising achievement in the field of transportation and will greatly 
help in the spread of these vehicles instead of internal combustion 
electric vehicles (ICEVs), due to their advantages such as starting at low 
temperatures and generating low emissions. This electrochemical 
equipment can convert hydrogen and oxidants into electricity, heat, and 
water (H2O) at varying temperatures [5].

Therefore, there is a global trend towards electric and hydrogen cars 
due to the economic and environmental problems caused by the trans-
portation of fossil fuels, especially in smart cities [5]. Fig. 1 shows an 
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example of electric vehicles (EVs) charging stations (CSs) in smart cities 
[6]. Fig. 2 shows an illustration example of Hydrogen Fuel Cell Vehicle 
with Station Ecology, while Fig. 3 illustrates an example of smart 
hydrogen vehicle CS.

Recently, the number of EVs increased dramatically globally, 
because of the policies that encourage people to have EVs instead of 
ICEVs, mainly to save energy and reduce the CO2 emissions [7]. In 
Norway, the Netherlands, and China, the market share of EVs is already 
28.8%, 6.4%, and 1.4%, respectively. Many other nations have set goals 
to achieve 100% EV penetration in the near future. However, the pub-
lic’s satisfaction of EVs, the design of the traffic network, and the con-
venience of EV drivers could all suffer from the improper location of 
charging stations in cities [8].

Finding the best sites for CSs in cities is a crucial element that impacts 
the global penetration of EVs and the energy consumption in trans-
portation sector [9]. As a result, effective methodologies must be used to 
find an energy efficient placement for Electric CSs. Aiming to install an 
energy effective CSs for sustainable urban transportation’s sector. In the 
last few years, there has been an increased focus on proposing new 
methodologies and strategies for identifying the optimal locations for 
EVs charging point in cities. Methods for decision-making have emerged 
as the most common and efficient tools in recent research. These tech-
niques have employed multiple variables and different level of con-
straints in order to solve the placement problem.

The technology and city planning problems listed above are pri-
marily portrayed as optimization difficulties. These challenges encom-
pass both linear and nonlinear programming problems according to the 
sort of obtained equations [10]. Integer Programming (IP) and 
real-valued programming (RVP) are typically present in the same 
problem of EVCS, and their respective solutions depend on the accept-
able values of the decision variables [11]. Researchers introduced 
distinct single objective [12,13], and multi-objectives [14,15] according 
to the number of proposed objective functions. On occasion, a game 
theory is used to analyze these optimization problems [16,17].

Many algorithms have been incorporated with these objective 

functions, to solve the stated optimization problems, for example but not 
limited to Genetic algorithm (GA) [18–20], particle swarm Optimization 
[21], Branch and Bound algorithm [22], Ant Colony algorithm [23], a 
gradient free optimization algorithm such as Jaya algorithm and other 
optimization techniques [24–27], etc. These solvers, however, did not 
take the constraints’ convexification into account. As such, they were 
unable to ensure a global minimum.

In [28], Human behaviors have been studied rather than focusing on 
the technological issues in placing CSs in urban areas. So, they used the 
drivers’ charging and driving behaviors to determine the optimal loca-
tions of these charging points in the investigated area. Moreover, they 

Fig. 1. EV charging stations in smart cities.

Fig. 2. Fuel cell of Hydrogen vehicle with Station Ecology.
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also considered the mobility of the drivers in different areas, where they 
work, live and visit. In this paper, the problem has been formulated as an 
optimization problem, considering different types of parameters and 
constraints. Although the authors have discussed the placement of 
EVCSs as an optimization problem in Ref. [29]. However, the authors 
have mainly focused on a hybrid model considering various preferences 
of the owners of CSs, EVs’ users, and the operators of distribution 
electricity networks. The problem also has been formulated by uncertain 
Mixed Integer programming problem (MIPP). The proposed approach 
was compared to the crisp models in order to demonstrate the obtained 
results.

Travels pattern of EVs’ users and practices of charging has been 
considered in Ref. [30], charging slots in nearby zones, traffic conges-
tion, charging demand for every zone have also been taken into account 
in this study. Authors used the NSGA-II in order to determine charging 
demand that each CS should cover. A multi-objective function was uti-
lized to make a tradeoff between the maximization of the system ben-
efits and maximization of minimum level of coverage.

In [31], the problem of CSs sites was discussed in terms of motivation 
others to have EVs, which in turn leads to spread EVs in urban areas. A 
new model called (nested Logit) has been incorporated to investigate the 
charging behavior and preference of EVs’ driver, also estimate the 
overall charging demand for each CS. A Mixed Integer Nonlinear 
(MINLP) optimization model was presented in Ref. [32]. The loss in EV 
energy, power grid, build-up cost, road networks, urban roads were 
taken into consideration in this approach. In Ref. [33], a zonal-based 
technique was presented in order to find the optimal location of CSs, 
and calculate the capacity of each CS. Other costs related to the devel-
opment of CSs, electric grid operators were taken into account in this 
introduced approach. The problem was formulated as a MINLP problem 
to reduce the total cost of EVCSs, and GA was utilized to solve this 
problem.

In [34], a novel fuzzy decision model was employed to determine the 
best site for EVCS. The main objective of this paper is to minimize the 
losses of grids and CSs. Achieving mobility sustainability is another 
parameter that was considered in Ref. [35]. A comprehensive technique 
to find the optimal size and locations of CSs has been introduced in Refs. 
[36,37], considering the loss in electric grids, and EVCSs’ development 
cost. A new modified version of BLSA was performed as another opti-
mization approach for the planning of CSs.

As far as we know, the previous approaches in the literature have not 
taken into consideration the difference in elevation between the loca-
tions of EVs and CSs which has an impact factor as a geographical 

parameter on the decision of placing EVCSs in cities. The presented 
approach in this paper is unique in this, as we consider the impact of the 
difference in positive slope between the sites of EVs and CSs.

The main contributions of this study are listed as follows.

• An energy-efficient approach for selecting the best sites for EVCSs in 
cities, considering the horizontal energy consumption of EVs to 
arrive CSs. The hallmark of this approach is a realistic and accurate 
model to calculate the energy consumption of EVs considering the 
difference in elevation between the positions of EVs and CSs.

• The EVCSs location problem was formulated as a Mixed linear Pro-
gramming (MLP) problem. A PSO technique was utilized in order to 
resolve the presented problem based on real dataset data of the 
environment. The positions of EVs and charging points, and the el-
evations of both have been taken from Google maps.

• The Haversine equation has been incorporated with the proposed 
approach as a separate model. The results obtained from this model 
are comparable and accurate compared with the results obtained by 
Euclidean distance equation.

The rest of the paper is structured as follows. Section II is devoted to 
system modeling, problem formulation, and optimization problems. 
Numerical results and discussion will be presented in Section III. Section 
IV concludes the paper.

NOMENCLATURE

EV Electric Vehicle
CS Charging Station
ICEV Internal Combustion Engine Vehicle
PSO Particle Swarm Optimizer
GA Genetic Algorithm
PEMF Proton Exchange Membrane Fuel-cells
GHG Greenhouse Gas
IP Integer Programming
R–VP Real-valued Programming
MINP Mixed Integer Nonlinear Programming
MIPP Mixed Integer Programming Problem
Symbols
CO2 Carbon Dioxide
H2 Hydrogen
H2O Water
N = {1, …,a, 

…,N}
The set of EVs, an EV a has its own attributes.

M = {1, …,b, 
…,M}

The set of CSs, a CS b has its own characteristics.

Qz = {1, …,k, 
…,Z}

The set of zones in the study area. Each zone has its attributes.

K The total number of charging stations in the investigated area.
N The total number of electric vehicles in the investigated area.
μ represents the total # of zones.
disab Distance between positions of EV a and the intended CS b.
ηeab Total energy that EV consumes per km to arrive intended CS (in 

kWh/km).
εab Total energy that EV consumes per km to overcome the positive 

slope in its way to the intended CS in kWh/km).
x(ab) Binary variable used as indicator of selecting a CS or not, it is 1 if 

the CS is chosen by an EV, while 0 if another one is selected.
MsEV The mass of an EV in (kg).
Hgab The difference in positive slope between the positions of EV and 

targeted CS
Lb The number of connectors that are required at selected CS b.
Cr The connector rated power, i.e., connector capacity.
CHr The maximum number of EVs that can be charged by a connector.

2. Problem formulation

In this study, we deal with the problem of finding the best sites for 
EVCSs as an integer problem (binary integer problem). Our suggested 
method looks for the best positions of EVCSs in the investigated area, 
based on the least amount of energy that EVs spend to arrive targeted CS.

Fig. 3. Hydrogen vehicle refueling station.
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2.1. Entities

In our model, we have N number of EVs in the investigated area. An 
electric vehicle a has three features: evn

a,evv
a,ev

p
a, where EVn

a, evv
a,EVp

a are 
the EV’s ID, the elevation and the coordinates, respectively.

Regarding the CSs, in our proposed approach, there are K number of 
CSs in all zones. Candidate CS b has three attributes: csn

b , cs
v
b, cs

p
b, where 

csn
b represents the ID of CS, csv

b is its height and csp
b is its positions on the 

Google map. Fig. 4 shows all the entities of the EV charging model.

2.2. Energy consumption model

To determine the precise amount of required energy for all EVs to 
reach CS, i.e., ξab, of EV a to arrive CS b, both energy consumption that is 
needed from the mobility of EV to the intended CS, as well as the total 
amount of energy consumption that EV a requires to deal with the 
positive slope to arrive CS b. ξab can be calculated as shown below: 

ξab = (ηab + εab) × disab.                                                              (1)

Where ηeab is energy that EV a consumes to arrive CS b, and the εab is 
the amount of energy that EV a requires to deal with the difference in 
positive slope for the positions of EV a and CS b. disab denotes the hor-
izontal movement of EV a to the position where a CS b is located.

disab is calculated by haversine (hav) formula. The haversine is used 
to find the shortest path between two locations on a sphere, using their 
latitudes and longitudes as shown in Fig. 5. 

haver(θ) = sin2
(

θ
2

)

(2) 

The haversine is calculated as follows: 

hav

(
disab

R

)

= hav(δb − δa) + cos(δa)cos (δb)hav(lb − la) (3) 

Where R represents the radius of the earth, δa, la are the EV’s latitude 
and longitude, and δb, lb are the CS’s latitude and longitude, respectively.

The haversine finds only half of the angle θ′s versine. The distance 
disab can be calculated using the inverse of (sin) function as shown 
below: 

disab =2R sin− 1 ×
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

hav(δb − δa) + cos(δb)hav(lb − la)
√ )

= 2R sin− 1 ×

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sin2
(δb − δa

2

)
+ cos(δa)cos(δb)sin2

(
lb − la

2

)√ )

(4) 

ηab is the amount of energy that EV requires to consume by its hor-
izontal mobility of EV a to reach CS b. In our proposed approach we 

assume it as in Refs. [33,38].
εab is calculated based on the formula of a hill climbing force as 

shown in Fig. 6, which in turn finds the force that EV a spends to 
overcome the difference in elevation between its position and the po-
sition of CS b, as shown below: 

Fs = MSEV × g × sin β [N or kgm/s2].                                              (5)

Where Fs denotes the force of hill climbing, MSEV is the EV’s mass (kg), g 
is the force of earth gravitational, which is almost (9.8 m/s2), and β is the 
road slope’s angle that results from the difference in elevation between 
the positions of EV and CS: 

β = sin− 1 (Hgab/disab)                                                                     (6)

Where Hgab is the difference in elevation between EV a and CS b. Fig. 6
shows the force of slope resistance that EV requires to overcome to 
arrive candidate CS. The value of εab can be calculated as shown below: 

Еab = Fc × 2.78 × 10− 4 [kWh/km].                                                (7)

2.3. Optimization problem

In our experiment, we assume that the set of CSs is K = {1, …, b, …, 
K}, the set of EV population is represented by N = {1, …, a, …, N}. The 
set of zones is denoted by Qz = {1, …, k, …, Z}. The EVs’ elevation and 
position characteristics are the same of the center of the zones where 
their owners live. Each zone k in the study are has 4 features; μn

k, μi
k, μv

k , 
and μcp

k , where μid
k is the ID of the zone, μi

k denotes the population of EVs 
μk, μv

k is the height of μcp
k and μcp

k is the zone’s center coordinates of μk.
Following is the optimization problem (the mathematical model), 

including both the main objective function of our proposed approach 
and all the proposed system constraints.

Fig. 4. EV charging model entities.

Fig. 5. An illustration of haversine formula.

Fig. 6. Hill climbing force slope.
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- Objective Function

min
y,X

∑

b∈y,y∁k

∑

a∈N
εab × xab (8) 

- Subject to:
∑

b∈k
xab =1,∀a ∈ N (9) 

∑N

a=1
xab ≤ϑb, ∀b ∈ y (10) 

xab ∈{0,1},∀a ∈ N, ∀b ∈ y (11) 

As shown in (8), the proposed objective function aims to minimize 
the total energy consumption of the movement of EV to reach a CS, 
considering the horizontal movement of EV, and also difference in 
height between the positions of EV and CS. Eq (9), illustrates that each 
EV can only select one charging station. In Eq. (10), ϑ(b) represents the 
total number of EVs that can be allocated to a particular CS. As shown in 
Eq. (11), x(ab) is the binary decision variable that is used to show 
whether EV a is assigned to a CS b or not, the value of x(ab) is one if EV a 
chooses CS a, otherwise the value of x(ab) is set to zero.

2.4. PSO-based solution

One of the most well-known naturalistic swarm-based optimization 
methods is particle swarm optimization (PSO). This nature-inspired 
method has experienced a huge rise in popularity as a result of its 
adaptability and simplicity. Every branch of research is now paying 
close attention to particle swarm optimization (PSO). This algorithm 
models how flocks of birds interact with one another to reach their food 
destination. A flock of birds approaches their food source using their 
collective social and personal experience. They constantly reposition 
themselves to achieve the finest configuration possible based on their 
best position as well as the optimum position for the entire swarm. The 
velocity of particle k in the swarm in the (j +1)th generation, is modified, 
based on Eq. (12): 

Vk(j + 1) = Vk(j) + c1 × r1 (pk
best,j − Xk(j)) + (12)

c2 × r2 (gbest,j) − XK(j))                                                                       

The position of each particle k, at every generation (j + 1)th, varies 
according to Eq. (13): 

Vk(j + 1) = Vk(j) + Vk(j + 1)                                                        (13)

Fig. 7 shows the flowchart of PSO algorithm and Fig. 8 shows the 
Pseudocode of PSO Algorithm.

3. Numerical results

3.1. System settings

Our proposed model was applied on some post codes of Newcastle 
upon Tyne city, UK. The investigated area is (10 × 5) km. In our ex-
periments, we assume that the horizontal energy consumption of EV is 
about 1 kWh to travel for 7 km [33,38]. Table 1 illustrates the zone ID 
for the seven zones that are included in the study area. Furthermore, the 
height and coordinates of the geographical center of each zone, and the 
population of EVs is presented in Table 1 as well.

In our proposed model, during the process of implementation, 12 
candidate CSs are distributed on the main streets in the seven post zones. 
Fixed distance between these candidate CSs is assumed as well. Fig. 9
shows the proposed locations of the candidate CSs over the investigated 
area. It is assumed that the total number of vehicles is about 100 

thousand, we assume that the percentage of EVs is 5% of the total ve-
hicles’ population. Moreover, we assume that 20% of EVs will travel to 
CSs for charging during the 3 charging peak hours. We assume that a 
charger at any CS can charge 2 EV/h, and the EV’s state of charge (SoC) 
is zero when it arrives at a CS.

Fig. 7. Flowchart of proposed approach using PSO.

Fig. 8. Pseudocode of PSO algorithm.
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3.2. Results analysis discussion

The experiments have been applied on the investigated area, as 
discussed before in Section 3.1. The results have been obtained from 
over 40 independent experiments on real-data from the study area. The 
error bars show the standard deviation got from the implementation of 
these experiments. The system was implemented in the MATLAB 
numeric computing platform R2023b on PROBOOK (HP), CORE i5 8th 
Generation, 8 GB RAM, and 8-CPUs 1.6 GHz.

The distribution of EVs in the post codes that have been included in 
this study is shown in Fig. 10. The center of zones (NE1-NE7) is repre-
sented as black dots. The populations of EVs are denoted by blue dots. 
While the black lines show the borders between adjacent zones.

All information required for the CSs is shown in Table 2. The base 

scenario was implemented based on the information on both Tables 1 
and 2 Table 3 shows the basic system settings.

Table 4 shows the selected CSs, and the total number of EVs that have 
been assigned to each CVS. CS_2, CS_3, CS_7, CS_9, and CS_11 have been 
selected, due to its proximity to the location of EVs in the investigated 
area, and also the small difference in positive slope between the EVs and 
CSs positions. It is easy to see that the total number of EVs that have been 
assigned to CS_2 is the highest compared to the other CSs as shown in 
Table 4. The reason behind this is the small difference in elevation and 
distance between the position of EVs, especially in NE1 and the position 
of CS_2 in NE1 as shown in Tables 1 and 2 The EVs in zone NE1 do not 
need to travel a long distance to reach CS_2 and the amount of energy 
that EVs need to overcome the positive elevation difference is very low. 
However, it is easy to see that the total number of EVs that have selected 
CS_9 is the least compared to the other CSs, this is also because of the 
difference in positive slope between the EVs and CSs sites in zones NE3 
and NE5, and the distance that EVs in both zones require to reach CS_9.

Fig. 11 shows the total amount of energy that EVs consume to arrive 
at selected CSs. Although the total number of EVs selected CS_9 is very 
low compared to the other CSs as shown in Table 4, the total energy 
consumption is somewhat high. The reason for this is the difference in 
positive slope between the locations of EVs and CS_9 and the long dis-
tance between them as well.

3.3. Validation of the proposed approach

In this part of work, a comparison between the proposed techniques 
and other techniques will be discussed. First: we will compare our 
approach with the Genetic Algorithm (GA) technique, and then will be 
compared with the greedy technique.

3.3.1. A comparison between the proposed approach and GA technique
In this section, we validate our proposed approach by comparing it 

with the GA technique. As we did in the previous section, we ran the 
experiments more than 40 times with the same parameters, constraints, 
and environment. Table 5 shows the selected CSs by using GA technique 
and the number of EVs that were assigned to each CS. The only metric 

Table 1 
Zones information.

Zone ID Elevation EVs Pop Position

Latitude Longitude

NE1 0.0419 238 54.972794 − 1.613160
NE2 0.0531 101 54.991047 − 1.606179
NE3 0.0679 141 55.004470 − 1.619863
NE4 0.103 188 54.975670 − 1.641451
NE5 0.076 91 55.013533 − 1.723296
NE6 0.053 162 54.976902 − 1.578134
NE7 0.0668 79 54.998768 − 1.588817

Fig. 9. The study area map.

Fig. 10. Distribution of EVs and CSs in the study area.

Table 2 
Description of CSs.

CSID Elev. Coordinates

Latitude Longitude

CS_1 0.111 55.97451 − 1.643612
CS_2 0.042 55.969061 − 1.620001
CS_3 0.02009 55.970018 − 1.581501
CS_4 0.0329 55.965391 − 1.549907
CS_5 0.0310 55.990001 − 1.55700
CS_6 0.0510 55.991743 − 1.601001
CS_7 0.061 55.00121 − 1.617012
CS_8 0.112 55.000012 − 1.657451
CS_9 0.110 54.005233 − 1.670604
CS_10 0.0871 54.005007 − 1.640329
CS_11 0.0598 54.005601 − 1.611205
CS_12 0.0701 54.008974 − 1.579150

Table 3 
System main parameters.

Parameter Value Unit

K 12 CSs
ηeab 00.143 kWh/km [33,38]
MsEV 1800 kg
N 1000 EVs
gr 9.80665 m/s2

μ 7 –
CHr 2 /h
Cr 95 kW
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that has been considered to select CS is distance between the position of 
EVs and charging slots. As shown in Table 5, the distribution of EVs to 
available CSs is completely different. On the contrary, both metrics, the 
difference in elevation and the proximity of EVs to the location of 
charging points were taken into consideration in our proposed 
approach.

Fig. 12 shows the total amount of energy consumption of EVs to 
reach CSs using the GA technique. As mentioned previously, the 40 
experiments were run over the same parameters and system constraints 
that have been included in the experiments of the proposed approach. It 

is easy to see that the total energy consumption of assignment EVs to CSs 
is more compared to the proposed approach as shown in Fig. 10. 
Moreover, it is also noticeable that the obtained standard deviation by 
running of these experiments is larger than the obtained using the pro-
posed approach as well. The reason behind this refers to the good 
amount of fluctuation or variation among the fitness values that have 
been obtained using the GA technique.

Fig. 13 shows a comparison between the proposed approach and the 
GA according to the total amount of energy consumption that EVs need 
to arrive CSs. It is easy to see that the total amount of energy con-
sumption that EVs need to reach CSs using GA increased about 22% 
compared to the proposed approach.

3.3.2. A comparison between the proposed approach and greedy technique
To demonstrate the impact of the elevation on the decision of 

selecting CSs and on the proposed technique, a greedy technique will be 
considered in this part of work. As known, the greedy technique takes 
into consideration the distance only to decide the best destination, 
which means that the greedy algorithm will ignore the influence of the 
elevation on the decision of selecting the charging point. So, the EVs will 
choose the optimal CSs based on the shortest distance between the lo-
cations of EVs and charging facilities as shown in Fig. 14. Eq. (14) shows 
the Euclidean distance that has been used to calculate the distances 
between EVs and CSs: 

d(p,q)2 = (q1 − p1)2 + (q2 − p2)2                                                  (14)

Table 6 shows how the EVs were distributed to the charging points in 
the investigated area. It is obvious that the distribution of EVs on the CSs 
is completely different compared to the previous techniques. The reason 
behind this is that the greedy technique ignored the impact of the dif-
ference in elevation between the locations of EVs and CSs. The hori-
zontal distance that the EVs need to spend to reach CSs is the only 
parameter that has been taken into account in selecting CSs. Referring to 
Table 6 we see that the majority of EVs selected the CSs in the same zone. 
The reason behind this is that each EV targeted the closest CS regardless 
of the difference in heights.

Fig. 15 illustrates the total amount of energy that EVs need to spend 
to overcome the positive slope between the locations of EVs and CSs. It is 
obvious that the total amount of energy consumption that the EVs need 
to reach CS is more compared to the other discussed techniques, i.e., the 
proposed and greedy techniques. It is also easy to notice that the stan-
dard deviation is very low compared to the proposed and greedy tech-
nique, and this is because of the assumption in this approach that the 

Table 4 
Selected CSs with assigned EVs using proposed technique.

CSs CS_2 CS_3 CS_7 CS_9 CS_11

EVs 326 234 198 64 178

Fig. 11. Total energy-consumption of EVs at each CS using proposed technique.

Table 5 
Selected CSs with assigned EVs using GA technique.

CSs CS_1 CS_2 CS_3 CS_7 CS_10

EVs 188 197 203 122 290

Fig. 12. Total energy-consumption of EVs at each CS using GA technique.
Fig. 13. Comparison between the proposed approach and GA due to energy 
consumption.
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positive slope is ignored, and the distance is the only metric that has 
been considered here. CS_8 was selected by EVs in zone NE4 instead of 
CS_1 which was selected using GA due to the proximity of this CS to the 
location of EVs in this zone.

Fig. 16 shows a comparison between the proposed approach and the 
greedy approach in terms of the total amount of energy consumption 
that EVs need to reach CSs. It is obvious that the total amount of energy 
consumption that EVs need to reach CSs using greedy technique 
increased about 43% compared to the proposed approach (base 
scenario).

Fig. 17 shows a comparison between the three techniques that have 
been discussed in this paper. It is easy to see that the proposed tech-
niques save a lot of energy compared to the other approaches that have 
been discussed in this work. Same parameters and system constraints 
have been taken into account in the proposed approach and the GA 
technique, the robustness and strength of the proposed approach over 
GA comes from the efficiency of the PSO algorithm compared to the GA 
in such kind of problems. However, the greedy approach has the least 
efficiency because it ignores the variance in elevation between the 

locations of the EVs and CSs.

4. Conclusion

An efficient energy Optimization approach for selecting the optimal 
locations of electric vehicle charging stations in the metropolitan areas 
was presented and discussed in this work. In the proposed approach, the 
horizontal distance that the EVs travel to reach CSs locations was 
considered. Moreover, the difference in positive elevations has been 
taken into account in the proposed model. The Haversine formula was 
used in order to find the actual distance between the positions of EVs and 
CSs. The results obtained from the experimental attempts showed the 
robustness and efficiency of the proposed approach in locating CSs in the 
best locations in the urban areas. In order to validate the proposed 
approach, a comparison with the genetic algorithm and the greedy 
technique has been carried out. As shown in the results section, the 
comparisons showed that the energy consumption increased about 22% 
and 43% using the GA and greedy techniques compared to the proposed 
approach, respectively.

Fig. 14. Total energy-consumption of EVs at each CS using greedy technique.

Table 6 
Selected CSs with assigned EVs using greedy technique.

CSs CS_2 CS_3 CS_7 CS_8 CS_11

EVs 238 162 101 188 311

Fig. 15. Total energy-consumption of EVs at each CS using greedy technique.

Fig. 16. Comparison between the proposed approach and greedy approach due 
to energy consumption.

Fig. 17. Comparison between the proposed approach, GA, and greedy tech-
nique due to energy consumption.
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